organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido(dicyclohexylamino)phosphine

Neil M. Boag* and Andrew J. Guest

Functional Materials, Institute for Materials Research, Cockcroft Building, University of Salford, Salford M5 4WT, England Correspondence e-mail: n.m.boag@salford.ac.uk

Received 31 October 2007; accepted 1 November 2007

Key indicators: single-crystal X-ray study; T = 218 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.097; data-to-parameter ratio = 23.4.

The title molecule, $PCl_2N(C_6H_{11})_2$ or $C_{12}H_{22}Cl_2NP$, adopts an approximate C_s symmetry with a plane passing through the P and N atoms and bisecting each cyclohexyl group. The Cl atoms lie on either side of this plane. The sum of angles around N is 359.98°. There are no intermolecular interactions.

Related literature

The molecular geometry and dimensions are comparable to those of PCl₂NMe₂ except that steric crowding of the cyclohexyl groups increases the C–N–C angle by approximately 3° (Mitzel, 1998). For related literature, see: Märkl & Alig (1984).

Experimental

Crystal data

C₁₂H₂₂Cl₂NP $M_r = 282.18$ Monoclinic, $P2_1/n$ a = 6.4694 (8) Å b = 17.8264 (18) Å c = 12.939 (2) Å $\beta = 96.872$ (10)°

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (*XPREP*; Siemens, 1996) $T_{\min} = 0.825$, $T_{\max} = 0.940$ (expected range = 0.712–0.811) 4540 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 145 para

 $wR(F^2) = 0.097$ H-atom

 S = 1.05 $\Delta \rho_{max} =$

 3387 reflections
 $\Delta \rho_{min} =$

Z = 4 Mo K α radiation μ = 0.52 mm⁻¹ T = 218 (2) K 0.60 × 0.60 × 0.40 mm

V = 1481.5 (3) Å³

3387 independent reflections
3150 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.087$
3 standard reflections
every 97 reflections
intensity decay: none

145 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2580).

References

Märkl, G. & Alig, B. (1984). J. Organomet. Chem. 273, 1-29.

```
Mitzel, N. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3239-3242.
```

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,.

Siemens (1996). XSCANS (Version 2.20) and SHELXTL-Plus (Version 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. supplementary materials

Acta Cryst. (2007). E63, o4606 [doi:10.1107/S1600536807055183]

Dichlorido(dicyclohexylamino)phosphine

N. M. Boag and A. J. Guest

Comment

The title molecule, (I) (Fig. 1), adopts an approximate C_s symmetry with a plane bisecting the phosphorus and nitrogen atoms and each of the two cyclohexyl groups which are in chair conformations. The chlorides sit either side of this plane. The nitrogen is essentially planar (sum of angles = 359.98°). There are no intermolecular interactions.

Experimental

The title compound was prepared by literature methods (Märkl & Alig, 1984) and a suitable crystal was grown by crystallization from hexane.

Refinement

All H atoms were placed in calculated positions and refined using a riding model with C—H = 0.98Å for methylene groups and C—H = 0.99Å for tertiary H atoms and U(H)= $1.2U_{eq}$ (C).

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been excluded for clarity.

Dichloro(dicyclohexylamino)phosphine

Crystal data	
$C_{12}H_{22}Cl_2NP$	$F_{000} = 600$
$M_r = 282.18$	$D_{\rm x} = 1.265 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.4694 (8) Å	Cell parameters from 30 reflections
b = 17.8264 (18) Å	$\theta = 5.5 - 12.5^{\circ}$
c = 12.939 (2) Å	$\mu = 0.52 \text{ mm}^{-1}$
$\beta = 96.872 \ (10)^{\circ}$	T = 218 (2) K
V = 1481.5 (3) Å ³	Block, colourless
<i>Z</i> = 4	$0.60 \times 0.60 \times 0.40 \text{ mm}$

Data collection

Siemens P4 diffractometer	$R_{\rm int} = 0.087$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 218(2) K	$h = -1 \rightarrow 8$
profile fitting of $\theta/2\theta$ scans	$k = -1 \rightarrow 23$
Absorption correction: ψ scan (PROGRAM?; REFERENCE?)	$l = -16 \rightarrow 16$
$T_{\min} = 0.825, T_{\max} = 0.940$	3 standard reflections
4540 measured reflections	every 97 reflections
3387 independent reflections	intensity decay: none
3150 reflections with $I > 2\sigma(I)$	

Refinement

Refinement	on F^2	

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.041$

 $wR(F^2) = 0.097$

S = 1.05

3387 reflections

145 parameters

Primary atom site location: structure-invariant direct E methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 0.5948P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.42$ e Å⁻³ $\Delta\rho_{min} = -0.43$ e Å⁻³

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
Р	0.39761 (7)	0.13232 (2)	0.62770 (3)	0.04246 (13)
Cl1	0.25915 (8)	0.17300 (4)	0.75460 (3)	0.06987 (19)
Cl2	0.69212 (6)	0.17705 (3)	0.67608 (3)	0.04867 (13)

Ν	0.3064 (2)	0.18837 (7)	0.53336 (9)	0.0338 (3)
C11	0.2174 (2)	0.15378 (8)	0.43283 (10)	0.0304 (3)
H11	0.1720	0.1955	0.3849	0.036*
C12	0.3785 (3)	0.10924 (11)	0.38213 (13)	0.0460 (4)
H12A	0.4303	0.0679	0.4281	0.055*
H12B	0.4966	0.1418	0.3722	0.055*
C13	0.2853 (3)	0.07775 (12)	0.27726 (15)	0.0558 (5)
H13A	0.2487	0.1192	0.2288	0.067*
H13B	0.3892	0.0466	0.2484	0.067*
C14	0.0926 (3)	0.03115 (10)	0.28753 (14)	0.0522 (4)
H14A	0.0311	0.0148	0.2183	0.063*
H14B	0.1321	-0.0137	0.3291	0.063*
C15	-0.0672 (3)	0.07542 (10)	0.33883 (14)	0.0456 (4)
H15A	-0.1855	0.0429	0.3484	0.055*
H15B	-0.1189	0.1169	0.2932	0.055*
C16	0.0250 (2)	0.10661 (9)	0.44403 (12)	0.0394 (3)
H16A	-0.0792	0.1375	0.4731	0.047*
H16B	0.0627	0.0651	0.4923	0.047*
C21	0.3110 (2)	0.27110 (7)	0.54083 (10)	0.0285 (3)
H21	0.3746	0.2839	0.6121	0.034*
C22	0.0923 (2)	0.30448 (9)	0.52723 (13)	0.0393 (3)
H22A	0.0125	0.2843	0.5807	0.047*
H22B	0.0208	0.2903	0.4589	0.047*
C23	0.1021 (3)	0.38991 (10)	0.53599 (16)	0.0507 (4)
H23A	-0.0390	0.4105	0.5225	0.061*
H23B	0.1590	0.4039	0.6070	0.061*
C24	0.2366 (3)	0.42339 (9)	0.45938 (15)	0.0508 (4)
H24A	0.1733	0.4131	0.3881	0.061*
H24B	0.2441	0.4779	0.4687	0.061*
C25	0.4545 (3)	0.39077 (9)	0.47516 (13)	0.0424 (3)
H25A	0.5223	0.4048	0.5443	0.051*
H25B	0.5366	0.4117	0.4231	0.051*
C26	0.4490 (2)	0.30532 (8)	0.46541 (11)	0.0333 (3)
H26A	0.3954	0.2913	0.3940	0.040*
H26B	0.5906	0.2854	0.4803	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Р	0.0523 (3)	0.0380 (2)	0.0340 (2)	-0.00576 (17)	-0.00762 (17)	0.01147 (15)
Cl1	0.0472 (2)	0.1311 (5)	0.0323 (2)	-0.0049 (3)	0.00896 (17)	0.0195 (2)
Cl2	0.0336 (2)	0.0675 (3)	0.0429 (2)	0.00425 (17)	-0.00350 (15)	0.00985 (18)
Ν	0.0439 (7)	0.0295 (6)	0.0260 (5)	-0.0043 (5)	-0.0046 (5)	0.0024 (4)
C11	0.0345 (7)	0.0303 (6)	0.0254 (6)	-0.0021 (5)	0.0000 (5)	0.0000 (5)
C12	0.0372 (8)	0.0569 (10)	0.0446 (9)	0.0003 (7)	0.0073 (6)	-0.0099 (7)
C13	0.0584 (11)	0.0672 (12)	0.0441 (9)	0.0000 (9)	0.0160 (8)	-0.0195 (8)
C14	0.0636 (11)	0.0451 (9)	0.0474 (9)	-0.0027 (8)	0.0035 (8)	-0.0180 (7)
C15	0.0420 (8)	0.0460 (9)	0.0475 (9)	-0.0091 (7)	0.0002 (7)	-0.0118 (7)

supplementary materials

C16	0.0392 (7)	0.0416 (8)	0.0380 (8)	-0.0079 (6)	0.0074 (6)	-0.0064 (6)
C21	0.0298 (6)	0.0292 (6)	0.0258 (6)	-0.0010 (5)	0.0004 (5)	-0.0003 (5)
C22	0.0307 (7)	0.0437 (8)	0.0440 (8)	0.0014 (6)	0.0059 (6)	-0.0004 (6)
C23	0.0454 (9)	0.0454 (9)	0.0608 (11)	0.0131 (7)	0.0039 (8)	-0.0111 (8)
C24	0.0644 (11)	0.0272 (7)	0.0583 (11)	0.0028 (7)	-0.0031 (8)	0.0005 (7)
C25	0.0487 (9)	0.0338 (7)	0.0443 (8)	-0.0109 (6)	0.0034 (7)	0.0015 (6)
C26	0.0332 (7)	0.0332 (7)	0.0340 (7)	-0.0017 (5)	0.0058 (5)	0.0016 (5)
Geometric paran	neters (Å, °)					
P—N		1 6322 (12)	C16	—Н16А	0.98	300
P-Cl2		2.0910 (6)	C16	—H16В	0.98	300
P—Cl1		2.0920 (8)	C21		1.52	259 (19)
N—C21		1.4780(17)	C21		1.52	263 (18)
N—C11		1 4915 (17)	C21	—H21	0.99	200
C11—C12		1 520 (2)	C22	2—C23	1.52	28 (2)
C11-C16		1.523 (2)	C22	е <u>-</u> H22A	0.98	300
C11—H11		0.9900	C22	2—H22R	0.98	800
C12-C13		1 525 (2)	C23	—C24	1 51	8(3)
C12—H12A		0.9800	C23	—Н23А	0.98	800
C12—H12R		0.9800	C23	H23R	0.98	800
C12 - C14		1 517 (3)	C24		1 51	6(3)
C13—H13A		0.9800	C24	—H24А	0.98	800
C13—H13B		0.9800	C24		0.98	800
C14-C15		1 516 (2)	C25		1.52	29 (2)
C14—H14A		0.9800	C25	—H25A	0.98	29 (<u>-</u>) 200
C14—H14B		0.9800	C25		0.98	800
C15-C16		1 524 (2)	C26	—H26А	0.98	800
C15—H15A		0.9800	C26	—H26B	0.98	800
C15—H15B		0.9800	020	11200	0.70	
N—P—Cl2		103.02 (5)	C11	—C16—H16B	109	.5
N—P—Cl1		102.97 (5)	C15	—C16—H16B	109	.5
Cl2—P—Cl1		95.35 (3)	H16	6A—C16—H16B	108	.1
C21—N—C11		118.18 (10)	N—	-C21—C22	111	.74 (12)
C_{21} N P		124 00 (9)	N—	-C21—C26	111	44 (11)
C11—N—P		117.80 (9)	C22	-C21-C26	112	.07 (11)
N-C11-C12		112.28 (12)	N—	-C21—H21	107	.1
N—C11—C16		112.33 (12)	C22	с <u>—С21—Н21</u>	107	.1
C12—C11—C16		111.28 (13)	C26	—C21—H21	107	.1
N-C11-H11		106.8	C21		110	.51 (13)
C12—C11—H11		106.8	C21	—C22—H22A	109	.5
C16—C11—H11		106.8	C23	—С22—Н22А	109	.5
C11—C12—C13		110.96 (14)	C21	—С22—Н22В	109	.5
C11—C12—H12	A	109.4	C23	—С22—Н22В	109	.5
C13—C12—H12	A	109.4	H22	2A—C22—H22B	108	.1
C11—C12—H12I	В	109.4	C24		111.	.44 (14)
C13—C12—H12I	В	109.4	C24	—С23—Н23А	109	.3
H12A—C12—H1	2B	108.0	C22	сН23А	109	.3
C14—C13—C12		111.44 (15)	C24	—С23—Н23В	109	.3

C14—C13—H13A	109.3	С22—С23—Н23В	109.3
C12—C13—H13A	109.3	H23A—C23—H23B	108.0
C14—C13—H13B	109.3	C25—C24—C23	110.97 (14)
C12—C13—H13B	109.3	C25—C24—H24A	109.4
H13A—C13—H13B	108.0	C23—C24—H24A	109.4
C15—C14—C13	111.35 (14)	C25—C24—H24B	109.4
C15—C14—H14A	109.4	C23—C24—H24B	109.4
C13—C14—H14A	109.4	H24A—C24—H24B	108.0
C15—C14—H14B	109.4	C24—C25—C26	111.05 (13)
C13—C14—H14B	109.4	C24—C25—H25A	109.4
H14A—C14—H14B	108.0	C26—C25—H25A	109.4
C14—C15—C16	111.49 (14)	C24—C25—H25B	109.4
C14—C15—H15A	109.3	C26—C25—H25B	109.4
C16—C15—H15A	109.3	H25A—C25—H25B	108.0
C14—C15—H15B	109.3	C21—C26—C25	110.79 (12)
C16—C15—H15B	109.3	C21—C26—H26A	109.5
H15A—C15—H15B	108.0	C25—C26—H26A	109.5
C11—C16—C15	110.70 (13)	C21—C26—H26B	109.5
C11—C16—H16A	109.5	C25—C26—H26B	109.5
C15-C16-H16A	109.5	H26A—C26—H26B	108.1
Cl2—P—N—C21	-48.37 (12)	C12—C11—C16—C15	-55.90 (18)
Cl1—P—N—C21	50.35 (12)	C14—C15—C16—C11	55.61 (19)
Cl2—P—N—C11	130.23 (10)	C11—N—C21—C22	63.11 (16)
Cl1—P—N—C11	-131.06 (10)	P—N—C21—C22	-118.30 (13)
C21—N—C11—C12	116.26 (14)	C11—N—C21—C26	-63.14 (16)
P—N—C11—C12	-62.42 (16)	P-N-C21-C26	115.45 (12)
C21—N—C11—C16	-117.42 (14)	N-C21-C22-C23	179.66 (13)
P-N-C11-C16	63.90 (15)	C26—C21—C22—C23	-54.44 (17)
N-C11-C12-C13	-177.33 (14)	C21—C22—C23—C24	55.33 (19)
C16—C11—C12—C13	55.79 (19)	C22—C23—C24—C25	-57.0 (2)
C11—C12—C13—C14	-55.2 (2)	C23—C24—C25—C26	56.89 (19)
C12-C13-C14-C15	55.1 (2)	N-C21-C26-C25	-179.22 (12)
C13-C14-C15-C16	-55.3 (2)	C22—C21—C26—C25	54.72 (16)
N-C11-C16-C15	177.25 (12)	C24—C25—C26—C21	-55.55 (17)

Fig. 1

